Modelling the interaction between relativistic and non-relativistic winds in binary pulsar systems: strong magnetization of the pulsar wind

Author:

Bogovalov S V1,Khangulyan D2ORCID,Koldoba A3,Ustyugova G V4,Aharonian F156

Affiliation:

1. National Research Nuclear University (MEPhI), Kashirskoje shosse 31, Moscow 115409, Russia

2. Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

3. Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny 141701, Russia

4. Keldysh Institute of Applied Mathematics, RAN, Miusskaya sq. 4, Moscow 125047, Russia

5. Dublin Institute for Advanced Studies, School of Cosmic Physics, 31 Fitzwilliam Place, Dublin 2, Ireland

6. Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany

Abstract

ABSTRACT We present a numerical study of the properties of the flow produced by the collision of a magnetized anisotropic pulsar wind with the circumbinary environment. We focus on studying the impact of the high wind magnetization on the geometrical structure of the shocked flow. This work is an extension of our earlier studies that focused on a purely hydrodynamic interaction and weak wind magnetization. We consider the collision in the axisymmetric approximation, i.e. the pulsar rotation axis is assumed to be oriented along the line between the pulsar and the optical star. The increase of the magnetization results in the expansion of the opening cone in which the shocked pulsar wind propagates. This effect is explained in the frameworks of the conventional theory of collimation of magnetized winds. This finding has a direct implication for scenarios that involve Doppler boosting as the primary mechanism behind the GeV flares detected with the Fermi Large Area Telescope from PSR B1259−63/LS 2883. The maximum enhancement of the apparent emission is determined by the ratio of 4$\pi$ to the solid in which the shocked pulsar wind propagates. Our simulations suggest that this enhancement factor is decreased by the impact of the magnetic field.

Funder

Ministry of Education and Science of the Russian Federation

Russian Foundation for Basic Research

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3