Turbulent stress within dead zones and magnetic field dragging induced by Rossby vortices

Author:

Chametla Raúl O1ORCID,Chrenko Ondrej1ORCID,Reyes-Ruiz Mauricio2,Sánchez-Salcedo F J3

Affiliation:

1. Charles University, Faculty of Mathematics and Physics , Astronomical Institute V Holešovičkác 747/2, CZ-18000 Prague 8 , Czech Republic

2. Instituto de Astronomía, Universidad Nacional Autónoma de México , Ensenada, 22800 B.C , Mexico

3. Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad Universitaria , Apt. Postal 70-264, C.P. 04510, Mexico City , Mexico

Abstract

ABSTRACT By means of three-dimensional resistive-magnetohydrodynamical models, we study the evolution of the so-called dead zones focused on the magnitude of the Reynolds and Maxwell stresses. We consider two different types of static resistivity radial profiles that give rise to an intermediate dead zone or an intermediate active zone. As we are interested in analysing the strength of angular momentum transport in these intermediate regions of the disc, we use as free parameters the radial extent of the intermediate dead (Δridz) or active (Δriact) zones, and the widths of the inner ($H_{b_1}$) and outer ($H_{b_2}$) transitions. We find that regardless of the width or radial extent of the intermediate zones, Rossby wave instability (RWI) develops at these transition boundaries, leading to the emergence of vortices and spiral waves. In the case of an intermediate dead zone when $H_{b_1}\, ,H_{b_2}\le 0.8$, the vortices are almost completely confined to the dead zone. Remarkably, we find that the formation of vortices at the inner transition can drag magnetic field lines into the dead zone stirring up the region that the vortex covers (reaching an α ≈ 10−2 value similar to that of an active zone). Vortices formed in the outer transition only modify the Reynolds stress tensor. Our results can be important to understanding angular momentum transport in poorly ionized regions within the disc due to magnetized vortices within dead zones.

Funder

Czech Science Foundation

Charles University

Ministry of Education, Youth and Sports

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3