The linear response of stellar systems does not diverge at marginal stability

Author:

Hamilton Chris1ORCID,Heinemann Tobias2

Affiliation:

1. Institute for Advanced Study , Einstein Drive, Princeton, NJ 08540 , USA

2. Niels Bohr International Academy, Niels Bohr Institute , Blegdamsvej 17, DK-2100 Copenhagen , Denmark

Abstract

ABSTRACT The linear response of a stellar system’s gravitational potential to a perturbing mass comprises two distinct contributions. Most famously, the system will respond by forming a polarization ‘wake’ around the perturber. At the same time, the perturber may also excite one or more ‘Landau modes’, i.e. coherent oscillations of the entire stellar system which are either stable or unstable depending on the system parameters. The amplitude of the first (wake) contribution is known to diverge as a system approaches marginal stability. In this paper, we consider the linear response of a homogeneous stellar system to a point mass moving on a straight line orbit. We prove analytically that the divergence of the wake response is in fact cancelled by a corresponding divergence in the Landau mode response, rendering the total response finite. We demonstrate this cancellation explicitly for a box of stars with Maxwellian velocity distribution. Our results imply that polarization wakes may be much less efficient drivers of secular evolution than previously thought. More generally, any prior calculation that accounted for wakes but ignored modes – such as those based on the Balescu-Lenard equation – may need to be revised.

Funder

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3