Stellar age determination in the mass–luminosity plane

Author:

Higgins Erin R1,Vink Jorick S1

Affiliation:

1. Armagh Observatory and Planetarium , College Hill, Armagh BT61 9DG, UK

Abstract

ABSTRACT The ages of stars have historically relied on isochrone fitting of standardized grids of models. While these stellar models have provided key constraints on observational samples of massive stars, they inherit many systematic uncertainties, mainly in the internal mixing mechanisms applied throughout the grid, fundamentally undermining the isochrone method. In this work, we utilize the mass–lumiosity (M–L) plane of Higgins & Vink as a method of determining stellar age, with mixing-corrected models applying a calibrated core overshooting αov and rotation rate to fit the observational data. We provide multiple test-beds to showcase our new method, while also providing comparisons to the commonly used isochrone method, highlighting the dominant systematic errors. We reproduce the evolution of individual O stars, and analyse the wider sample of O and B supergiants from the VLT-FLAMES Tarantula Survey, providing dedicated models with estimates for αov, Ω/Ωcrit, and ultimately stellar ages. The M–L plane highlights a large discrepancy in the spectroscopic masses of the O supergiant sample. Furthermore the M–L plane also demonstrates that the evolutionary masses of the B supergiant sample are inappropriate. Finally, we utilize detached eclipsing binaries, VFTS 642 and VFTS 500, and present their ages resulting from their precise dynamical masses, offering an opportunity to constrain their interior mixing. For the near-TAMS system, VFTS 500, we find that both components require a large amount of core overshooting (αov ≃ 0.5), implying an extended main-sequence width. We hence infer that the vast majority of B supergiants are still burning hydrogen in their cores.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3