Affiliation:
1. Department of Physics, Illinois State University, Normal, IL 61761 USA
Abstract
ABSTRACT
In the far future, long after star formation has ceased, the universe will be populated by sparse degenerate remnants, mostly white dwarfs, though their ultimate fate is an open question. These white dwarfs will cool and freeze solid into black dwarfs while pycnonuclear fusion will slowly process their composition to iron-56. However, due to the declining electron fraction, the Chandrasekhar limit of these stars will be decreasing and will eventually be below that of the most massive black dwarfs. As such, isolated dwarf stars with masses greater than ∼1.2 M⊙ will collapse in the far future due to the slow accumulation of iron-56 in their cores. If proton decay does not occur, then this is the ultimate fate of about 1021 stars, approximately 1 percent of all stars in the observable universe. We present calculations of the internal structure of black dwarfs with iron cores as a model for progenitors. From pycnonuclear fusion rates, we estimate their lifetime and thus delay time to be 101100 yr. We speculate that high-mass black dwarf supernovae resemble accretion induced collapse of O/Ne/Mg white dwarfs while later low mass transients will be similar to stripped-envelope core-collapse supernova, and may be the last interesting astrophysical transients to occur prior to heat death.
Funder
National Science Foundation
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献