Interacting galaxies in the IllustrisTNG simulations - I: Triggered star formation in a cosmological context

Author:

Patton David R1ORCID,Wilson Kieran D1,Metrow Colin J1,Ellison Sara L2ORCID,Torrey Paul3ORCID,Brown Westley1,Hani Maan H2,McAlpine Stuart4ORCID,Moreno Jorge5,Woo Joanna2

Affiliation:

1. Department of Physics and Astronomy, Trent University, 1600 West Bank Drive, Peterborough ON K9L 0G2, Canada

2. Department of Physics and Astronomy, University of Victoria, Finnerty Road, Victoria BC V8P 1A1, Canada

3. Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611, USA

4. Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2a P.O. Box 64, FI-00014 Helsinki, Finland

5. Department of Physics and Astronomy, Pomona College, Claremont, CA 91711, USA

Abstract

ABSTRACT We use the IllustrisTNG cosmological hydrodynamical simulations to investigate how the specific star formation rates (sSFRs) of massive galaxies (M* > 1010 M⊙) depend on the distance to their closest companions. We estimate sSFR enhancements by comparing with control samples that are matched in redshift, stellar mass, local density, and isolation, and we restrict our analysis to pairs with stellar mass ratios of 0.1 to 10. At small separations (∼15 kpc), the mean sSFR is enhanced by a factor of 2.0 ± 0.1 in the flagship (110.7 Mpc)3 simulation (TNG100-1). Statistically significant enhancements extend out to 3D separations of 280 kpc in the (302.6 Mpc)3 simulation (TNG300-1). We find similar trends in the EAGLE and Illustris simulations, although their sSFR enhancements are lower than those in TNG100-1 by about a factor of two. Enhancements in IllustrisTNG galaxies are seen throughout the redshift range explored (0 ≤ $z$ < 1), with the strength of the enhancements decreasing with increasing redshift for galaxies with close companions. In order to more closely compare with observational results, we separately consider 2D projected distances between galaxies in IllustrisTNG. We detect significant sSFR enhancements out to projected separations of 260 kpc in TNG300-1, with projection effects diluting the size of the enhancements by about 20 per cent below 50 kpc. We find similar sSFR enhancements in TNG100-1 and Sloan Digital Sky Survey galaxies, with enhancements extending out to projected separations of about 150 kpc for star-forming galaxies at $z$ < 0.2. Finally, by summing over all separations, we estimate that the presence of closest companions boosts the average sSFR of massive galaxies in TNG100-1 by 14.5 per cent.

Funder

NSERC

NSF

Alfred P. Sloan Foundation

National Science Foundation

U.S. Department of Energy

National Aeronautics and Space Administration

Max Planck Society

Higher Education Funding Council for England

University of Chicago

Chinese Academy of Sciences

Institute for Astronomy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3