Cooling flow solutions for the circumgalactic medium

Author:

Stern Jonathan1ORCID,Fielding Drummond23ORCID,Faucher-Giguère Claude-André1ORCID,Quataert Eliot3ORCID

Affiliation:

1. Department of Physics and Astronomy and CIERA, Northwestern University, Evanston, IL 60208, USA

2. Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA

3. Astronomy Department and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720, USA

Abstract

ABSTRACT In several models of galaxy formation feedback occurs in cycles or mainly at high redshift. At times and in regions where feedback heating is ineffective, hot gas in the galaxy halo is expected to form a cooling flow, where the gas advects inward on a cooling timescale. Cooling flow solutions can thus be used as a benchmark for observations and simulations to constrain the timing and extent of feedback heating. Using analytic calculations and idealized 3D hydrodynamic simulations, we show that for a given halo mass and cooling function, steady-state cooling flows form a single-parameter family of solutions, while initially hydrostatic gaseous haloes converge on one of these solutions within a cooling time. The solution is thus fully determined once either the mass inflow rate ${\dot{M}}$ or the total halo gas mass are known. In the Milky Way halo, a cooling flow with ${\dot{M}}$ equal to the star formation rate predicts a ratio of the cooling time to the free-fall time of ∼10, similar to some feedback-regulated models. This solution also correctly predicts observed $\rm{O\,{\small VII}}$ and $\rm{O\,{\small VIII}}$ absorption columns, and the gas density profile implied by $\rm{O\,{\small VII}}$ and $\rm{O\,{\small VIII}}$ emission. These results suggest ongoing heating by feedback may be negligible in the inner Milky-Way halo. Extending similar solutions out to the cooling radius however underpredicts observed $\rm{O\,{\small VI}}$ columns around the Milky-Way and around other low-redshift star-forming galaxies. This can be reconciled with the successes of the cooling flow model with either a mechanism which preferentially heats the $\rm{O\,{\small VI}}$-bearing outer halo, or alternatively if $\rm{O\,{\small VI}}$ traces cool photoionized gas beyond the accretion shock. We also demonstrate that the entropy profiles of some of the most relaxed clusters are reasonably well described by a cooling flow solution.

Funder

Simons Foundation

National Sleep Foundation

National Aeronautics and Space Administration

Space Telescope Science Institute

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3