Scalable precision wide-field imaging in radio interferometry – II. AIRI validated on ASKAP data

Author:

Wilber A G1,Dabbech A1ORCID,Terris M1,Jackson A2ORCID,Wiaux Y1

Affiliation:

1. Institute of Sensors , Signals and Systems, Heriot-Watt University, Edinburgh EH14 4AS, UK

2. EPCC, The University of Edinburgh , Edinburgh EH8 9BT, UK

Abstract

ABSTRACT Accompanying Part I, this sequel delineates a validation of the recently proposed AI for Regularization in radio-interferometric Imaging (AIRI) algorithm on observations from the Australian Square Kilometre Array Pathfinder (ASKAP). The monochromatic AIRI-ASKAP images showcased in this work are formed using the same parallelized and automated imaging framework described in Part I: ‘uSARA validated on ASKAP data’. Using a Plug-and-Play approach, AIRI differs from uSARA by substituting a trained denoising deep neural network (DNN) for the proximal operator in the regularization step of the forward–backward algorithm during deconvolution. We build a trained shelf of DNN denoisers that target the estimated image dynamic ranges of our selected data. Furthermore, we quantify variations of AIRI reconstructions when selecting the nearest DNN on the shelf versus using a universal DNN with the highest dynamic range, opening the door to a more complete framework that not only delivers image estimation but also quantifies epistemic model uncertainty. We continue our comparative analysis of source structure, diffuse flux measurements, and spectral index maps of selected target sources as imaged by AIRI and the algorithms in Part I – uSARA and WSClean. Overall, we see an improvement over uSARA and WSClean in the reconstruction of diffuse components in AIRI images. The scientific potential delivered by AIRI is evident in further imaging precision, more accurate spectral index maps, and a significant acceleration in deconvolution time, whereby AIRI is four times faster than its subiterative sparsity-based counterpart uSARA.

Funder

UK Research and Innovation

EPSRC

STFC

University of Edinburgh

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scalable precision wide-field imaging in radio interferometry: I. uSARA validated on ASKAP data;Monthly Notices of the Royal Astronomical Society;2023-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3