Computational tools for the spectroscopic analysis of white dwarfs

Author:

Chandra Vedant1ORCID,Hwang Hsiang-Chih1ORCID,Zakamska Nadia L1ORCID,Budavári Tamás12ORCID

Affiliation:

1. Department of Physics and Astronomy, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA

2. Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA

Abstract

ABSTRACT The spectroscopic features of white dwarfs are formed in the thin upper layer of their stellar photosphere. These features carry information about the white dwarf’s surface temperature, surface gravity, and chemical composition (hereafter ‘labels’). Existing methods to determine these labels rely on complex ab-initio theoretical models, which are not always publicly available. Here, we present two techniques to determine atmospheric labels from white dwarf spectra: a generative fitting pipeline that interpolates theoretical spectra with artificial neural networks and a random forest regression model using parameters derived from absorption line features. We test and compare our methods using a large catalogue of white dwarfs from the Sloan Digital Sky Survey (SDSS), achieving the same accuracy and negligible bias as compared to previous studies. We package our techniques into an open-source python module ‘wdtools’ that provides a computationally inexpensive way to determine stellar labels from white dwarf spectra observed from any facility. We will actively develop and update our tool as more theoretical models become publicly available. We discuss applications of our tool in its present form to identify interesting outlier white dwarf systems including those with magnetic fields, helium-rich atmospheres, and double-degenerate binaries.

Funder

Johns Hopkins University

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3