The impact of magnetic fields on cosmological galaxy mergers – II. Modified angular momentum transport and feedback

Author:

Whittingham Joseph12ORCID,Sparre Martin12ORCID,Pfrommer Christoph1ORCID,Pakmor Rüdiger3ORCID

Affiliation:

1. Leibniz-Institute for Astrophysics Potsdam (AIP) , An der Sternwarte 16, D-14482 Potsdam, Germany

2. Institut für Physik und Astronomie, Universität Potsdam , Karl-Liebknecht-Str. 24/25, D-14476 Golm, Germany

3. Max Planck Institute for Astrophysics , Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany

Abstract

ABSTRACT The role of magnetic fields in galaxy evolution is still an unsolved question in astrophysics. We have previously shown that magnetic fields play a crucial role in major mergers between disc galaxies; in hydrodynamic simulations of such mergers, the Auriga model produces compact remnants with a distinctive bar and ring morphology. In contrast, in magnetohydrodynamic (MHD) simulations, remnants form radially extended discs with prominent spiral arm structure. In this paper, we analyse a series of cosmological ‘zoom-in’ simulations of major mergers and identify exactly how magnetic fields are able to alter the outcome of the merger. We find that magnetic fields modify the transport of angular momentum, systematically hastening the merger progress. The impact of this altered transport depends on the orientation of the field, with a predominantly non-azimuthal (azimuthal) orientation increasing the central baryonic concentration (providing support against collapse). Both effects act to suppress an otherwise existent bar-instability, which in turn leads to a fundamentally different morphology and manifestation of feedback. We note, in particular, that stellar feedback is substantially less influential in MHD simulations, which allows for the later accretion of higher angular momentum gas and the subsequent rapid radial growth of the remnant disc. A corollary of the increased baryonic concentration in MHD simulations is that black holes are able to grow twice as large, although this turns out to have little impact on the remnant’s development. Our results show that galaxy evolution cannot be modelled correctly without including magnetic fields.

Funder

DFG

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structure functions with higher-order stencils as a probe to separate small- and large-scale magnetic fields;Monthly Notices of the Royal Astronomical Society;2024-08-10

2. Magnetic field amplification in cosmological zoom simulations from dwarf galaxies to galaxy groups;Monthly Notices of the Royal Astronomical Society;2024-01-19

3. Cosmic ray feedback in galaxies and galaxy clusters;The Astronomy and Astrophysics Review;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3