Testing broad-line region models with reverberation mapping

Author:

Netzer Hagai1

Affiliation:

1. School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel

Abstract

ABSTRACT New reverberation mapping (RM) measurements, combined with accurate luminosities and line ratios, provide strong constraints on the location of the line emitting gas in the broad-line region (BLR) of active galactic nuclei (AGNs). In this paper, I present new calculations of radiation pressure and magnetic pressure confined clouds and apply them to a ‘generic AGN’ and to NGC 5548. The new calculations are in good agreement with the observed lags of all broad emission lines, and with the luminosities of Ly α, C iv 1549, O vi 1035, and He ii 1640. They are also in reasonable agreement with the luminosities of Mg ii 2798 and the 1990 Å blend of C iii] and Si iii] lines for high-metallicity gas. They explain the changes in time-lag following an increase in continuum luminosity and their dependencies on the inner and outer boundaries of the BLR. They also predict very strong Balmer and Paschen continua with important implications to continuum RM experiments. However, the calculated Balmer and Paschen line luminosities are too weak, by factors of 2–5. This ‘Balmer line crisis’ was noted in several earlier works and is now confirmed and constrained by RM measurements that were not available in the past. It seems that present photoionization codes that use the escape probability formalism fail to correctly compute the Balmer line luminosities in high-density, large optical depth gas.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3