Affiliation:
1. Hunan Key Laboratory for Stellar and Interstellar Physics and School of Physics and Optoelectronics, Xiangtan University, Hunan 411105, China
2. Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
Abstract
ABSTRACT
Ever since they were first detected over 100 yr ago, the mysterious diffuse interstellar bands (DIBs), a set of several hundred broad absorption features seen against distant stars in the optical and near-infrared wavelength range, largely remain unidentified. The close match, both in wavelengths and in relative strengths, recently found between the experimental absorption spectra of gas-phase buckminsterfullerene ions (C$_{60}^{+}$) and four DIBs at $\lambda 9632\, {\rm \mathring{\rm A}}$, $\lambda 9577\, {\rm \mathring{\rm A}}$, $\lambda 9428\, {\rm \mathring{\rm A}}$ and $\lambda 9365\, {\rm \mathring{\rm A}}$ (and, to a lesser degree, a weaker DIB at $\lambda 9348\, {\rm \mathring{\rm A}}$) suggests that C$_{60}^{+}$ is a promising carrier for these DIBs. However, arguments against the C$_{60}^{+}$ identification remain and are mostly concerned with the large variation in the intensity ratios of the $\lambda 9632\, {\rm \mathring{\rm A}}$ and $\lambda 9577\, {\rm \mathring{\rm A}}$ DIBs. In this work, we search for these DIBs in the X-shooter archival data of the European Southern Observatory’s Very Large Telescope, and we identify the $\lambda 9632\, {\rm \mathring{\rm A}}$, $\lambda 9577\, {\rm \mathring{\rm A}}$, $\lambda 9428\, {\rm \mathring{\rm A}}$ and $\lambda 9365\, {\rm \mathring{\rm A}}$ DIBs in a sample of 25 stars. While the $\lambda 9428\, {\rm \mathring{\rm A}}$ and $\lambda 9365\, {\rm \mathring{\rm A}}$ DIBs are too noisy to allow any reliable analysis, the $\lambda 9632\, {\rm \mathring{\rm A}}$ and $\lambda 9577\, {\rm \mathring{\rm A}}$ DIBs are unambiguously detected and, after correcting for telluric water vapour absorption, their correlation can be used to probe their origin. To this end, we select a subsample of nine hot, O- or B0-type stars of which the stellar Mg ii contamination to the $\lambda 9632\, {\rm \mathring{\rm A}}$ DIB is negligibly small. We find that their equivalent widths, after being normalized by reddening to eliminate their common correlation with the density of interstellar clouds, exhibit a tight, positive correlation, supporting C$_{60}^{+}$ as the carrier of the $\lambda 9632\, {\rm \mathring{\rm A}}$ and $\lambda 9577\, {\rm \mathring{\rm A}}$ DIBs.
Funder
National Natural Science Foundation of China
Chinese Academy of Sciences
NSF
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics