Satellite lines from auto-ionizing states of Fe xvi and the problems with the X-ray Fe xvii lines

Author:

Del Zanna G1ORCID,Badnell N R2,Storey P J3

Affiliation:

1. DAMTP, Centre for Mathematical Sciences, University of Cambridge , Wilberforce Road, Cambridge CB3 0WA , UK

2. Department of Physics, University of Strathclyde , Glasgow G4 0NG , UK

3. Department of Physics and Astronomy, University College London , London WC1E 6BT , UK

Abstract

ABSTRACT We present new calculations of atomic data needed to model auto-ionizing states of Fe xvi. We compare the state energies, radiative and excitation data with a sample of results from previous literature. We find a large scatter of results, the most significant ones in the auto-ionization rates, which are very sensitive to the configuration interaction and state mixing. We find relatively good agreement between the auto-ionization rates and the collisional excitation rates calculated with the R-matrix suite of programs and autostructure. The largest model, which includes J-resolved states up to $n=10$, produces ab-initio wavelengths and intensities of the satellite lines which agree well with solar high-resolution spectra of active regions, with few minor wavelength adjustments. We review previous literature, finding many incorrect identifications, most notably those in the NIST data base. We provide several new tentative identifications in the 15–15.7 Å range, and several new ones at shorter wavelengths, where previous lines were unidentified. Compared to the previous CHIANTI model, the present one has an increased flux in the 15–15.7 Å range at 2 MK of a factor of 1.9, resolving the discrepancies found in the analysis of the Marshall Grazing Incidence X-Ray Spectrometer observation. It appears that the satellite lines also resolve the long-standing discrepancy in the intensity of the important Fe xvii 3D line at 15.26 Å.

Funder

STFC

University of Strathclyde

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3