Particle diffusion and acceleration in magnetorotational instability turbulence

Author:

Sun Xiaochen1,Bai Xue-Ning12ORCID

Affiliation:

1. Institute for Advanced Study, Tsinghua University, Beijing 100084, China

2. Department of Astronomy, Tsinghua University, Beijing 100084, China

Abstract

ABSTRACT Hot accretion flows contain collisionless plasmas that are believed to be capable of accelerating particles to very high energies, as a result of turbulence generated by the magnetorotational instability (MRI). We conduct unstratified shearing-box simulations of the MRI turbulence in ideal magnetohydrodynamic (MHD), and inject energetic relativistic test particles in simulation snapshots to conduct a detailed investigation on particle diffusion and stochastic acceleration. We consider different amount of net vertical magnetic flux, with sufficiently high resolution to resolve the gyro-radii (Rg) of most particles. Particles with large Rg (≳ 0.03 disc scale height H) show spatial diffusion coefficients of ∼30 and ∼5 times Bohm values in the azimuthal and poloidal directions, respectively. We further measure particle momentum diffusion coefficient D(p) by applying the Fokker–Planck equation, finding that contribution from turbulent fluctuations scales as D(p) ∝ p, and shear acceleration takes over when Rg ≳ 0.1H, characterized by D(p) ∝ p3. For particles with smaller Rg (≲ 0.03H), their spatial diffusion coefficients roughly scale as ∼p−1, and show evidence of D(p) ∝ p2 scaling in momentum diffusion but with large uncertainties. We find that multiple effects contribute to stochastic acceleration/deceleration, and the process is likely affected by intermittency in the MRI turbulence. We also discuss the potential of accelerating PeV cosmic rays in hot accretion flows around supermassive black holes.

Funder

National Science Foundation of China

National Science Foundation

Tsinghua University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3