Optical intensity interferometry lab tests in preparation of stellar diameter measurements at IACTs at GHz photon rates

Author:

Zmija Andreas1,Vogel Naomi1,Anton Gisela1,Malyshev Dmitry1,Michel Thilo1,Zink Adrian1,Funk Stefan1

Affiliation:

1. Erlangen Centre for Astroparticle Physics, Friedrich–Alexander-Universität Erlangen–Nürnberg, Erwin-Rommel-Str 1, D-91058 Erlangen, Germany

Abstract

ABSTRACT Astronomical intensity interferometry enables quantitative measurements of the source geometry by measuring the photon fluxes in individual telescopes and correlating them, rather than correlating the electromagnetic waves’ amplitudes. This simplifies the realization of large telescope baselines and high angular resolutions. Imaging Atmospheric Cherenkov Telescopes (IACTs), intended to detect the optical emission of γ-ray-induced air showers, are excellent candidates to perform intensity correlations in the optical at reasonable signal-to-noise ratios. The detected coherence time is on the scale of (10−12)–(10−15) s – depending on the optical bandwidth of the measurement – which challenges the detection system to work in a stable and accurate way. We developed an intensity interferometry set-up applicable to IACTs, which measures the photocurrents from photomultipliers and correlates them offline, and as such is designed to handle the very large photon rates provided by the telescopes. We present measurements in the lab simulating starlight using a xenon lamp and measured at different degrees of temporal and spatial coherence. Necessary calibration procedures are described with the goal of understanding the measurements quantitatively. Measured coherence times between $5\,$femtoseconds (corresponding signal-to-background ratio 5 × 10−7) and $110\,$femtoseconds (signal-to-background ratio 10−5) are in good agreement with expectations, and so are the noise levels in the correlations, reaching down to 6 × 10−8, after measurements between $30\,$min and $1\,$h.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. First intensity interferometry measurements with the H.E.S.S. telescopes;Monthly Notices of the Royal Astronomical Society;2023-12-23

2. Comparing different approaches for stellar intensity interferometry;Monthly Notices of the Royal Astronomical Society;2022-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3