The impact of gas accretion and AGN feedback on the scatter of the mass–metallicity relation

Author:

Yang Nancy12ORCID,Scholte Dirk1,Saintonge Amélie1ORCID

Affiliation:

1. Department of Physics and Astronomy, University College London , London WC1E 6BT , UK

2. Sub-department of Astrophysics, Department of Physics, University of Oxford , Denys Wilkinson Building, Keble Road, Oxford OX1 3RH , UK

Abstract

ABSTRACT The gas-phase metallicity of galaxies encodes important information about galaxy evolution processes, in particular star formation, feedback, outflows, and gas accretion, the relative importance of which can be extracted from systematic trends in the scatter of the mass–metallicity relation (MZR). Here, we use a sample of low-redshift (0.02 < z < 0.055) galaxies from SDSS to investigate the nature of the scatter around the MZR, the observables and physical processes causing it, and its dependence on galaxy mass. We use cold gas masses inferred from optical emission lines using the technique of Scholte & Saintonge (2023) to confirm that at fixed stellar mass, metallicity and gas mass are anticorrelated, but only for galaxies up to M* = 1010.5 M⊙. In that mass regime, we find a link between the offset of a galaxy from the MZR and halo mass, using the amplitude of the two-point correlation function as a proxy for halo mass; at fixed stellar mass, the most gas-poor galaxies reside in the most massive haloes. This observation is consistent with changes in gas accretion rates onto galaxies as a function of halo mass, with environmental effects acting on satellite galaxies also contributing. At higher stellar masses, the scatter of the MZR does no longer correlate with gas or halo mass. Instead, there is some indication of a link with AGN activity, as expected from models and simulations that metallicity is set by the interplay between gas in- and outflows, star formation, and AGN feedback, shaping the MZR and its scatter.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3