Kinematic lensing inference – I. Characterizing shape noise with simulated analyses

Author:

R. S. Pranjal1ORCID,Krause Elisabeth12,Huang Hung-Jin1ORCID,Huff Eric3,Xu Jiachuan1ORCID,Eifler Tim1ORCID,Everett Spencer3

Affiliation:

1. Department of Astronomy/Steward Observatory, University of Arizona , 933 North Cherry Avenue, Tucson, AZ 85721 , USA

2. Department of Physics, University of Arizona , 1118 E. Fourth Street, Tucson, AZ 85721 , USA

3. Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA 91109 , USA

Abstract

ABSTRACT The unknown intrinsic shape of source galaxies is one of the largest uncertainties of weak gravitational lensing (WL). It results in the so-called shape noise at the level of $\sigma _\epsilon ^{\mathrm{WL}} \approx 0.26$, whereas the shear effect of interest is of the order of per cent. Kinematic lensing (KL) is a new technique that combines photometric shape measurements with resolved spectroscopic observations to infer the intrinsic galaxy shape and directly estimate the gravitational shear. This paper presents a KL inference pipeline that jointly forward-models galaxy imaging and slit spectroscopy to extract the shear signal. We build a set of realistic mock observations and show that the KL inference pipeline can robustly recover the input shear. To quantify the shear measurement uncertainty for KL, we average the shape noise over a population of randomly oriented disc galaxies and estimate it to be $\sigma _\epsilon ^{\mathrm{KL}}\approx 0.022\!-\!0.038$ depending on emission-line signal-to-noise ratio. This order of magnitude improvement over traditional WL makes a KL observational programme feasible with existing spectroscopic instruments. To this end, we characterize the dependence of KL shape noise on observational factors and discuss implications for the survey strategy of future KL observations. In particular, we find that prioritizing quality spectra of low-inclination galaxies is more advantageous than maximizing the overall number density.

Funder

NASA

David and Lucile Packard Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3