Dynamical friction and feedback on galactic bars in the general fast–slow regime

Author:

Chiba Rimpei123ORCID

Affiliation:

1. Canadian Institute for Theoretical Astrophysics, University of Toronto , 60 St. George Street, Toronto, ON M5S 3H8 , Canada

2. Mullard Space Science Laboratory, University College London , Holmbury St. Mary, Dorking, Surrey RH5 6NT , UK

3. Rudolf Peierls Centre for Theoretical Physics, University of Oxford , Parks Road, Oxford OX1 3PU , UK

Abstract

ABSTRACT Current theories of dynamical friction on galactic bars are based either on linear perturbation theory, which is valid only in the fast limit where the bar changes its pattern speed rapidly, or on adiabatic theory, which is applicable only in the slow limit where the bar’s pattern speed is near-constant. In this paper, we study dynamical friction on galactic bars spinning down at an arbitrary speed, seamlessly connecting the fast and slow limits. We treat the bar–halo interaction as a restricted N-body problem and solve the collisionless Boltzmann equation using the fast-angle-averaged Hamiltonian. The phase-space distribution and density wakes predicted by our averaged model are in excellent agreement with full 3D simulations. In the slow regime where resonant trapping occurs, we show that, in addition to the frictional torque, angular momentum is transferred directly due to the migration of the trapped phase-space: trapped orbits comoving with the resonance typically gain angular momentum, while untrapped orbits leaping over the trapped island lose angular momentum. Due to the negative gradient in the distribution function, gainers typically outnumber the losers, resulting in a net negative torque on the perturber. Part of this torque due to the untrapped orbits was already identified by Tremaine and Weinberg, who named the phenomenon dynamical feedback. Here, we derive the complete formula for dynamical feedback, accounting for both trapped and untrapped orbits. Using our revised formula, we show that dynamical feedback can account for up to 30 per cent of the total torque on the Milky Way’s bar.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3