Revisiting theKeplerfield withTESS: Improved ephemerides usingTESS2 min data

Author:

Battley Matthew P12ORCID,Kunimoto Michelle3,Armstrong David J12ORCID,Pollacco Don12

Affiliation:

1. Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

2. Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK

3. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

ABSTRACTUp to date planet ephemerides are becoming increasingly important as exoplanet science moves from detecting exoplanets to characterizing their architectures and atmospheres in depth. In this work, ephemerides are updated for 22 Kepler planets and 4 Kepler planet candidates, constituting all Kepler planets and candidates with sufficient signal to noise in the TESS 2 min data set. A purely photometric method is utilized here to allow ephemeris updates for planets even when they do not posses significant radial velocity data. The obtained ephemerides are of very high precision and at least seven years ‘fresher’ than archival ephemerides. In particular, significantly reduced period uncertainties for Kepler-411d, Kepler-538b, and the candidates K00075.01/K00076.01 are reported. O–C diagrams were generated for all objects, with the most interesting ones discussed here. Updated TTV fits of five known multiplanet systems with significant TTVs were also attempted (Kepler-18, Kepler-25, Kepler-51, Kepler-89, and Kepler-396), however these suffered from the comparative scarcity and dimness of these systems in TESS. Despite these difficulties, TESS has once again shown itself to be an incredibly powerful follow-up instrument as well as a planet-finder in its own right. Extension of the methods used in this paper to the 30 min-cadence TESS data and TESS extended mission has the potential to yield updated ephemerides of hundreds more systems in the future.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3