General relativistic moving-mesh hydrodynamic simulations with arepo and applications to neutron star mergers

Author:

Lioutas Georgios12ORCID,Bauswein Andreas13,Soultanis Theodoros145,Pakmor Rüdiger6ORCID,Springel Volker6ORCID,Röpke Friedrich K47

Affiliation:

1. GSI Helmholtzzentrum für Schwerionenforschung , Planckstraße 1, D-64291 Darmstadt , Germany

2. Department of Physics and Astronomy, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 226, D-69120 Heidelberg , Germany

3. Helmholtz Research Academy Hesse for FAIR (HFHF) , GSI Helmholtz Center for Heavy Ion Research, Campus Darmstadt , Germany

4. Heidelberger Institut für Theoretische Studien , Schloss-Wolfsbrunnenweg 35, D-69118, Heidelberg , Germany

5. Max-Planck-Institut für Astronomie , Königstuhl 17, D-69117 Heidelberg , Germany

6. Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Str. 1, D-85748, Garching , Germany

7. Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik , Philosophenweg 12, D-69120 Heidelberg , Germany

Abstract

ABSTRACT We implement general relativistic hydrodynamics in the moving-mesh code arepo. We also couple a solver for the Einstein field equations employing the conformal flatness approximation. The implementation is validated by evolving isolated static neutron stars using a fixed metric or a dynamical space–time. In both tests, the frequencies of the radial oscillation mode match those of independent calculations. We run the first moving-mesh simulation of a neutron star merger. The simulation includes a scheme to adaptively refine or derefine cells and thereby adjusting the local resolution dynamically. The general dynamics are in agreement with independent smoothed particle hydrodynamics and static-mesh simulations of neutron star mergers. Coarsely comparing, we find that dynamical features like the post-merger double-core structure or the quasi-radial oscillation mode persist on longer time scales, possibly reflecting a low numerical diffusivity of our method. Similarly, the post-merger gravitational wave emission shows the same features as observed in simulations with other codes. In particular, the main frequency of the post-merger phase is found to be in good agreement with independent results for the same binary system, while, in comparison, the amplitude of the post-merger gravitational wave signal falls off slower, i.e. the post-merger oscillations are less damped. The successful implementation of general relativistic hydrodynamics in the moving-mesh arepo code, including a dynamical space–time evolution, provides a fundamentally new tool to simulate general relativistic problems in astrophysics.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3