The GPU phase folding and deep learning method for detecting exoplanet transits

Author:

Wang Kaitlyn12ORCID,Ge Jian3,Willis Kevin2,Wang Kevin4,Zhao Yinan5

Affiliation:

1. The Harker School , 500 Saratoga Ave, San Jose, CA 95129 , USA

2. Science Talent Training Center , Gainesville, FL 32606 , USA

3. Division of Science and Technology for Optical Astronomy, Shanghai Astronomical Observatory , Chinese Academy of Sciences, Shanghai 200030 , China

4. Department of Computer Science, Princeton University , PO Box 430, Princeton, NJ 08544 , USA

5. Department of Astronomy, University of Geneva , Versoix 1290 , Switzerland

Abstract

ABSTRACT This paper presents GPFC, a novel Graphics Processing Unit (GPU) Phase Folding and Convolutional Neural Network (CNN) system to detect exoplanets using the transit method. We devise a fast-folding algorithm parallelized on a GPU to amplify low signal-to-noise ratio transit signals, allowing a search at high precision and speed. A CNN trained on two million synthetic light curves reports a score indicating the likelihood of a planetary signal at each period. While the GPFC method has broad applicability across period ranges, this research specifically focuses on detecting ultrashort-period planets with orbital periods less than one day. GPFC improves on speed by three orders of magnitude over the predominant Box-fitting Least Squares (BLS) method. Our simulation results show GPFC achieves 97 per cent training accuracy, higher true positive rate at the same false positive rate of detection, and higher precision at the same recall rate when compared to BLS. GPFC recovers 100 per cent of known ultrashort-period planets in Kepler light curves from a blind search. These results highlight the promise of GPFC as an alternative approach to the traditional BLS algorithm for finding new transiting exoplanets in data taken with Kepler and other space transit missions such as K2, TESS, and future PLATO and Earth 2.0.

Funder

Chinese Academy of Sciences

California Institute of Technology

NASA Science Mission Directorate

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3