The evolution of Lithium: implications of a universal Spite plateau

Author:

Matteucci Francesca123,Molero Marta1,Aguado David S4ORCID,Romano Donatella5ORCID

Affiliation:

1. Department of Physics, University of Trieste, 34143 Trieste, Italy

2. Trieste Observatory, Italian National Institute for Astrophysics (I.N.A.F.) Trieste, 34143 Trieste, Italy

3. Department of Physics, Italian National Institute for Nuclear Physics (I.N.F.N.), 34127 Trieste, Italy

4. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

5. Bologna Observatory, Italian National Institute for Astrophysics (I.N.A.F.) Bologna, 40129 Bologna, Italy

Abstract

ABSTRACT The cosmological 7Li problem consists in explaining why the primordial Li abundance, as predicted by the standard Big Bang nucleosynthesis theory with constraints from WMAP and Planck, is a factor of 3 larger than the Li abundance measured in the stars of the Spite plateau defined by old, warm dwarf stars of the Milky Way halo. Several explanations have been proposed to explain this difference, including various Li depletion processes as well as non-standard Big Bang nucleosynthesis, but the main question remains unanswered. In this paper, we present detailed chemical evolution models for dwarf spheroidal and ultra faint galaxies, compute the galactic evolution of 7Li abundance in these objects, and compare it with observations of similar objects. In our models, Li is mainly produced by novae and cosmic rays, and to a minor extent, by low and intermediate mass stars. We adopt the yield combination that best fits the Li abundances in the Milky Way stars. It is evident that the observations of dwarf objects define a Spite plateau, identical to that observed in the Milky Way, thus suggesting that the Spite plateau could be a universal feature and its meaning should be discussed. The predictions of our models for dwarf galaxies are obtained by assuming as Li primordial abundance either the one detected in the atmospheres of the oldest halo stars (Spite plateau; A(Li) ∼ 2.2 dex), or the one from cosmological observations (WMAP; A(Li) ∼ 2.66 dex). Finally, we discuss the implications of the universality of the Spite plateau results.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3