Unravelling the nuclear dust morphology of NGC 1365: a two-phase polar–RAT model for the ultraviolet to infrared spectral energy distribution

Author:

Swain Subhashree12,Shalima P3,Latha K V P1

Affiliation:

1. School of Physical, Chemical and Applied Sciences, Pondicherry University , Puducherry 605014 , India

2. Indian Institute of Astrophysics , Block II, Koramangala, Bangalore 560 034 , India

3. Manipal Centre for Natural Sciences, Centre of Excellence, Manipal Academy of Higher Education , Manipal, Karnataka 576104 , India

Abstract

ABSTRACT We present a 3D radiative transfer model for the spectral energy distribution (SED) of NGC 1365, which is a ‘changing look’ Seyfert 1.8 type active galactic nucleus (AGN). The SED from the ultraviolet (UV) to the infrared (IR) is constructed using archival data from the Ultra-Violet Imaging Telescope (UVIT) onboard AstroSat, along with IR data from the literature. The skirt radiative transfer code is used to model the SED and derive the geometry and composition of dust in this AGN. Similar to our earlier SED model of NGC 4151, the nuclear region of NGC 1365 is assumed to contain a ring or disc-like structure concentric to the accretion disc, composed of large (0.1–1 $\mu$m) graphite grains in addition to the two-phase dusty torus made up of interstellar-medium-type grains (Ring And Torus or RAT model). We also include, for the first time, an additional component of dusty wind in the form of a bipolar cone. We carry out a detailed analysis and derive the best-fitting parameters from a χ2 test to be Rin, r = 0.03 pc, σ = 26°, and τtotal = 20 for the assumed ring–torus–polar wind geometry. Our results suggest the presence of hot dust at a temperature T ∼ 1216 K at the location of the ring that absorbs and scatters the incident UV radiation and emits in the near-IR. In the mid-IR, the major contributors are the polar cone and warm dust with T ∼ 914 K at Rin, t = 0.1 pc. Not only are our model radii in agreement with IR interferometric observations, but also our study reiterates the role of high-resolution UV observations in constraining the dust grain size distribution in the nuclear regions of AGN.

Funder

Indian Space Research Organisation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3