Gravitational-wave follow-up with CTA after the detection of GRBs in the TeV energy domain

Author:

Bartos I1ORCID,Corley K R2,Gupte N1,Ash N1,Márka Z2,Márka S2

Affiliation:

1. Department of Physics, University of Florida, PO Box 118440, Gainesville, FL 32611-8440, USA

2. Department of Physics, Columbia University in the City of New York, 550 W 120th St., New York, NY 10027, USA

Abstract

ABSTRACT The recent discovery of TeV emission from gamma-ray bursts (GRBs) by the MAGIC and H.E.S.S. Cherenkov telescopes confirmed that emission from these transients can extend to very high energies. The TeV energy domain reaches the most sensitive band of the Cherenkov Telescope Array (CTA). This newly anticipated, improved sensitivity will enhance the prospects of gravitational-wave follow-up observations by CTA to probe particle acceleration and high-energy emission from binary black hole and neutron star mergers, and stellar core-collapse events. Here we discuss the implications of TeV emission on the most promising strategies of choice for the gravitational-wave follow-up effort for CTA and Cherenkov telescopes more broadly. We find that TeV emission (i) may allow more than an hour of delay between the gravitational-wave event and the start of CTA observations; (ii) enables the use of CTA’s small size telescopes that have the largest field of view. We characterize the number of pointings needed to find a counterpart. (iii) We compute the annual follow-up time requirements and find that prioritization will be needed. (iv) Even a few telescopes could detect sufficiently nearby counterparts, raising the possibility of adding a handful of small-sized or medium-sized telescopes to the network at diverse geographic locations. (v) The continued operation of VERITAS/H.E.S.S./MAGIC would be a useful compliment to CTA’s follow-up capabilities by increasing the sky area that can be rapidly covered, especially in the United States and Australia, in which the present network of gravitational-wave detectors is more sensitive.

Funder

University of Florida

Columbia University

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3