Exploring binary black hole mergers and host galaxies withsharkand COMPAS

Author:

Rauf Liana1ORCID,Howlett Cullan1ORCID,Davis Tamara M1ORCID,Lagos Claudia D P234

Affiliation:

1. School of Mathematics and Physics, The University of Queensland , Brisbane, QLD 4072, Australia

2. International Centre for Radio Astronomy Research (ICRAR), M468, University of Western Australia , 35 Stirling Hwy, Crawley, WA 6009, Australia

3. ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)

4. Cosmic Dawn Center (DAWN) , Denmark

Abstract

ABSTRACTWe explore the connection between the gravitational wave (GW) merger rates of stellar-mass binary black holes (BBHs) and galaxy properties. We do this by generating populations of stars using the binary population synthesis code COMPAS and evolving them in galaxies from the semi-analytic galaxy formation model Shark, to determine the number of mergers occurring in each simulation time-step. We find that metal-rich and massive galaxies with star formation rate (SFR) greater than $1\, {\rm M}_{\odot }\, \rm yr^{-1}$ are 10 times more likely to have GW events compared to younger, less massive, and metal-poor galaxies. Our simulation with the default input parameters predicts a higher local merger rate density compared to the third GW transient catalogue (GWTC-3) prediction from LIGO, VIRGO, and KAGRA, due to short coalescence times, low metallicities, and a high SFR at low redshift in the simulation, which produces more BBHs that merge within the age of the Universe compared to observations. We identify alternate remnant mass models that more accurately reproduce the volumetric rate and provide updated fits to the merger rate as a function of redshift. We then investigate the relative fraction of GW events in our simulation that are in observable host galaxies from upcoming galaxy surveys, determining which of those are ideal for tracing host galaxies with high merger rates. The implications of this work can be utilized for constraining stellar evolution models, better informing follow-up programs, and placing informative priors on host galaxies when measuring cosmological parameters such as the Hubble constant.

Funder

Australian Research Council

Australian Government

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3