The hydroxyl satellite-line ‘flip’ as a tracer of expanding H ii regions

Author:

Petzler Anita1ORCID,Dawson J R1,Wardle Mark1

Affiliation:

1. Department of Physics and Astronomy, and Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW 2109, Australia

Abstract

ABSTRACT Observations of the four 2Π3/2,  J = 3/2 ground state transitions of the hydroxyl radical (OH) have emerged as an informative tracer of molecular gas in the Galactic interstellar medium (ISM). We discuss an OH spectral feature known as the ‘flip’, in which the satellite lines at 1612 and 1720 MHz flip – one from emission to absorption and the other the reverse – across a closely blended double feature. We highlight 30 examples of the flip from the literature, 27 of which exhibit the same orientation with respect to velocity: the 1720-MHz line is seen in emission at more negative velocities. These same examples are also observed towards bright background continuum, many (perhaps all) show stimulated emission, and 23 of these are coincident in on-sky position and velocity with H ii radio recombination lines. To explain these remarkable correlations, we propose that the 1720-MHz stimulated emission originates in heated and compressed post-shock gas expanding away from a central H ii region, which collides with cooler and more diffuse gas hosting the 1612-MHz stimulated emission. The foreground gas dominates the spectrum due to the bright central continuum; hence, the expanding post-shock gas is blue-shifted relative to the stationary pre-shock gas. We employ non-local thermodynamic equilibrium (LTE) excitation modelling to examine this scenario and find that indeed FIR emission from warm dust adjacent to the H ii region radiatively pumps the 1612-MHz line in the diffuse, cool gas ahead of the expanding shock front, while collisional pumping in the warm, dense shocked gas inverts the 1720-MHz line.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3