Shape model and spin direction analysis of PHA (436724) 2011 UW158: a large superfast rotator

Author:

Monteiro Filipe1,Silva José Sergio2,Tamayo Francisco3,Rodrigues Teresinha1,Lazzaro Daniela1

Affiliation:

1. Observatório Nacional, Rua Gal. José Cristino, 77 - São Cristóvão, Rio de Janeiro - RJ 20921-400, Brazil

2. CONACYT - Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), 22860 Ensenada, B. C., Mexico

3. Universidad Autónoma de Nuevo León, UANL, Pedro de Alba, Ciudad Universitaria, 66451 San Nicolás de los Garza, N.L., Mexico

Abstract

ABSTRACT Observations of the large superfast rotator (436724) 2011 UW158 were carried out at the Observatório Astronômico do Sertão de Itaparica (OASI, Brazil) between May and October 2015, before and after it made a close approach to Earth in July 2015. These observations allowed us to obtain 11 light curves, and additional observations at the San Pedro Mártir Observatory (Baja California, Mexico) in March 2017 provided a light curve. From the obtained light curves we could confirm the fast rotation, 0.61071 h, of the near-Earth object (NEO) and by applying the inversion method, we derived a prograde sense of rotation and a quite elongated shape model with rough dimensions a/b  = 2.0, a/c = 4.2, and b/c  = 2.1. The best determined pole directions suggest that the maximum amplitude of the light curves was obtained from an equatorial view. The reconstructed shape models are in good agreement with the shape elongation and asymmetric shape reported by radar observations. As 2011 UW158 has an uncommon rotation period for asteroids larger than ∼200 m, we used the determined parameters to calculate the minimum internal cohesion strength required to keep its structure intact. We have found that a minimum cohesion ranging from 176 to 295 Pa is required in case the NEO has a composition similar to that of C-type asteroids, and from 364 to 451 Pa for the E-type. Therefore, we suggest that 2011 UW158, if not monolithic, requires a significant cohesion force to keep it spinning so fast.

Funder

National Aeronautics and Space Administration

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3