Atmospheric circulation of brown dwarfs and directly imaged exoplanets driven by cloud radiative feedback: effects of rotation

Author:

Tan Xianyu1ORCID,Showman Adam P23

Affiliation:

1. Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, UK

2. Lunar and Planetary Laboratory, University of Arizona, 1629 University Boulevard, Tucson, AZ 85721, USA

3. Department of Atmospheric and Oceanic Sciences, Peking University, Beijing 100871, China

Abstract

ABSTRACT Observations of brown dwarfs (BDs), free-floating planetary-mass objects, and directly imaged extrasolar giant planets (EGPs) exhibit rich evidence of large-scale weather. Cloud radiative feedback has been proposed as a potential mechanism driving the vigorous atmospheric circulation on BDs and directly imaged EGPs, and yet it has not been demonstrated in three-dimensional dynamical models at relevant conditions. Here, we present a series of atmospheric circulation models that self-consistently couple dynamics with idealized cloud formation and its radiative effects. We demonstrate that vigorous atmospheric circulation can be triggered and self-maintained by cloud radiative feedback. Typical isobaric temperature variation could reach over 100 K and horizontally averaged wind speed could be several hundreds of $\, {\rm m\, s^{-1}}$. The circulation is dominated by cloud-forming and clear-sky vortices that evolve over time-scales from several to tens of hours. The typical horizontal length-scale of dominant vortices is closed to the Rossby deformation radius, showing a linear dependence on the inverse of rotation rate. Stronger rotation tends to weaken vertical transport of vapour and clouds, leading to overall thinner clouds. Domain-mean outgoing radiative flux exhibits variability over time-scales of tens of hours due to the statistical evolution of storms. Different bottom boundary conditions in the models could lead to qualitatively different circulation near the observable layer. The circulation driven by cloud radiative feedback represents a robust mechanism generating significant surface inhomogeneity as well as irregular flux time variability. Our results have important implications for near-infrared (IR) colours of dusty BDs and EGPs, including the scatter in the near-IR colour–magnitude diagram and the viewing-geometry-dependent near-IR colours.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3