Using quasar X-ray and UV flux measurements to constrain cosmological model parameters

Author:

Khadka Narayan1,Ratra Bharat1

Affiliation:

1. Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66502, USA

Abstract

ABSTRACT Risaliti and Lusso have compiled X-ray and UV flux measurements of 1598 quasars (QSOs) in the redshift range 0.036 ≤ z ≤ 5.1003, part of which, z ∼ 2.4 − 5.1, is largely cosmologically unprobed. In this paper we use these QSO measurements, alone and in conjunction with baryon acoustic oscillation (BAO) and Hubble parameter [H(z)] measurements, to constrain cosmological parameters in six different cosmological models, each with two different Hubble constant priors. In most of these models, given the larger uncertainties, the QSO cosmological parameter constraints are mostly consistent with those from the BAO + H(z) data. A somewhat significant exception is the non-relativistic matter density parameter Ωm0 where QSO data favour Ωm0 ∼ 0.5 − 0.6 in most models. As a result, in joint analyses of QSO data with H(z) + BAO data the 1D Ωm0 distributions shift slightly towards larger values. A joint analysis of the QSO + BAO + H(z) data is consistent with the current standard model, spatially-flat ΛCDM, but mildly favours closed spatial hypersurfaces and dynamical dark energy. Since the higher Ωm0 values favoured by QSO data appear to be associated with the z ∼ 2 − 5 part of these data, and conflict somewhat with strong indications for Ωm0 ∼ 0.3 from most z < 2.5 data as well as from the cosmic microwave background anisotropy data at z ∼ 1100, in most models, the larger QSO data Ωm0 is possibly more indicative of an issue with the z ∼ 2 − 5 QSO data than of an inadequacy of the standard flat ΛCDM model.

Funder

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3