A critique of the Spite Plateau and the astration of primordial lithium

Author:

Norris J E1,Yong D12,Frebel A3,Ryan S G4

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University , Canberra, ACT 0200, Australia

2. ARC Centre of Excellence for Astrophysics in Three Dimensions (ASTRO-3D) , Australia

3. Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology , Cambridge, MA 02139, USA

4. Department of Physics, Astronomy and Mathematics, University of Hertfordshire , College Lane, Hatfield AL10 9AB, UK

Abstract

ABSTRACT We investigate the distribution of the lithium abundances, A(Li), of metal-poor dwarf and subgiant stars within the limits 5500 K < Teff < 6700 K, −6.0 < [Fe/H] < −1.5, and log  g ≳ 3.5 (a superset of parameters first adopted by Spite and Spite), using literature data for some 200 stars. We address the problem of the several methods that yield Teff differences up to 350 K, and hence uncertainties of 0.3 dex in [Fe/H] and A(Li), by anchoring Teff to the infrared flux method. We seek to understand the behaviour of A(Li) as a function of [Fe/H] – small dispersion at highest [Fe/H], ‘meltdown’ at intermediate values (i.e. large spread in Li below the Spite Plateau), and extreme variations at lowest [Fe/H]. Decreasing A(Li) is accompanied by increasing dispersion. Insofar as [Fe/H] increases as the Universe ages, the behaviour of A(Li) reflects chaotic star formation involving destruction of primordial Li, which settles to the classic Spite Plateau, with A(Li) ∼ 2.3, by the time the Galactic halo reaches [Fe/H] ∼ −3.0. We consider three phases: (1) first star formation in C-rich environments ([C/Fe] > 2.3), with depleted Li; (2) silicates-dominated star formation and destruction of primordial Li during pre-main-sequence evolution; and (3) materials from these two phases co-existing and coalescing to form C-rich stars with A(Li) below the Spite Plateau, leading to a toy model with the potential to explain the ‘meltdown’. We comment on the results of Mucciarelli et al. on the Lower RGB, and the suggestion of Aguado et al. favouring a lower primordial lithium abundance than generally accepted.

Funder

Australian Research Council

NSF

European Space Agency

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3