Discovery of a luminous starburst galaxy with hundreds of thousands of Wolf–Rayet stars

Author:

Yuan Anqi1,Yang Chenwei2ORCID,Zhong Guohu1,Xiao Lin34ORCID,Pan Xiang2ORCID,Zhou Hongyan234

Affiliation:

1. Beijing National Day School, Yuquan Road No. 66, Beijing 100039, China

2. Center for Space Physics and Astronomy, Key Laboratory for Polar Science of the State Oceanic Administration, Polar Research Institute of China, Shanghai 200136, China

3. CAS Key laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026, China

4. School of Astronomy and Space Sciences, University of Science and Technology of China, Hefei 230026, China

Abstract

ABSTRACT This paper reports the detection of a strong Wolf–Rayet (W-R) emission bump feature at 4400–4700 Å in the optical spectrum of a distant galaxy SDSS J150009.81+452844.4 at a redshift of 0.453. The estimated number of W-R stars is 1.5 × 105 without applying any internal extinction correction, and at least 4.5 × 105 after correcting for dust extinction. Such a number, though with uncertainties inherent from the extinction correction and others, appears to outnumber those in previous W-R galaxies after correcting for intrinsic dust extinction with the numbers available in the literature. These massive stars must have formed in an instantaneous star-forming episode lasting less than about 5 Myr. We estimate a star formation rate of at least ∼80 $\mathrm{M}_{\odot }\, \mathrm{yr^{-1}}$, indicative of a violent starburst. Its mid-infrared spectrum resembles closely those of typical local ultraluminous infrared galaxies (ULIRGs). From optical to ultraviolet, it possesses a luminous blue continuum, indicating that the starburst is not heavily obscured, in contrast to that found in most ULIRGs. There is evidence for strong outflows based on the detection of systematically blue-shifted broad wings in the nebular emission lines (a bulk velocity −190 km s−1), as well as in the blue-shifted Mg ii absorption lines. The emission-line gases show a wide velocity range, from −1200 to ∼−2000 km s−1 in blueshift to 570 km s−1 in redshift. We interpret this as a galactic fountain, of which part of the outflowing gas may be falling back to the galactic plane. Our method could be used to find a sample of similar objects, which would help understand the star formation history and stellar feedback in starburst galaxies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Anhui Provincial Natural Science Foundation

Alfred P. Sloan Foundation

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3