Affiliation:
1. School of Chemistry, University of New South Wales, 2052 Sydney, Australia
Abstract
ABSTRACT
The cyano radical (CN) is a key molecule across many different factions of astronomy and chemistry. Accurate, empirical rovibronic energy levels with uncertainties are determined for eight doublet states of CN using the marvel (Measured Active Rotational-Vibrational Energy Levels) algorithm. 40 333 transitions were validated from 22 different published sources to generate 8083 spin-rovibronic energy levels. The empirical energy levels obtained from the marvel analysis are compared to current energy levels from the mollist line list. The mollist transition frequencies are updated with marvel energy level data which brings the frequencies obtained through experimental data up to 77.3 per cent from the original 11.3 per cent, with 92.6 per cent of the transitions with intensities over 10−23 cm molecule−1 at 1000 K now known from experimental data. At 2000 K, 100.0 per cent of the partition function is recovered using only marvel energy levels, while 98.2 per cent is still recovered at 5000 K.
Funder
National Cancer Institute
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献