Hyperfine resolved rate coefficients of HC17O+ with H2 (j = 0)

Author:

Tonolo F12ORCID,Lique F3ORCID,Melosso M4ORCID,Puzzarini C2ORCID,Bizzocchi L2ORCID

Affiliation:

1. Scuola Normale Superiore , Piazza dei Cavalieri 7, I-56126 Pisa, Italy

2. Dipartimento di Chimica ‘Giacomo Ciamician’, Università di Bologna , Via F. Selmi 2, I-40126 Bologna, Italy

3. Institut de Physique de Rennes, Univ. Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251, F-35000 Rennes, France

4. Scuola Superiore Meridionale , Largo San Marcellino 10, I-80138 Naples, Italy

Abstract

ABSTRACT The formyl cation (HCO+) is one of the most abundant ions in molecular clouds and plays a major role in the interstellar chemistry. For this reason, accurate collisional rate coefficients for the rotational excitation of HCO+ and its isotopes due to the most abundant perturbing species in interstellar environments are crucial for non-local thermal equilibrium models and deserve special attention. In this work, we determined the first hyperfine resolved rate coefficients of HC17O+ in collision with H2 (j = 0). Indeed, despite no scattering calculations on its collisional parameters have been performed so far, the HC17O+ isotope assumes a prominent role for astrophysical modelling applications. Computations are based on a new four dimensional (4D) potential energy surface obtained at the CCSD(T)-F12a/aug-cc-pVQZ level of theory. A test on the corresponding cross-section values pointed out that, to a good approximation, the influence of the coupling between rotational levels of H2 can be ignored. For this reason, the H2 collider has been treated as a spherical body and an average of the potential based on five orientations of H2 has been employed for scattering calculations. State-to-state rate coefficients resolved for the HC17O+ hyperfine structure for temperature ranging from 5 to 100K have been computed using recoupling techniques. This study provides the first determination of HC17O+–H2 inelastic rate coefficients directly computed from full quantum close-coupling equations, thus supporting the reliability of future radiative transfer modellings of HC17O+ in interstellar environments.

Funder

MUR

PRIN

University of Bologna

European Research Council

INSU,CNRS

INC

INP

CEA

CNES

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3