Similarities behind the high- and low-α disc: small intrinsic abundance scatter and migrating stars

Author:

Lu Yuxi (Lucy)12ORCID,Ness Melissa K13,Buck Tobias4ORCID,Zinn Joel CORCID,Johnston Kathryn V13

Affiliation:

1. Department of Astronomy, Columbia University , 550 West 120th Street, New York, NY 10027, USA

2. American Museum of Natural History, Central Park West , Manhattan, NY 10024, USA

3. Center for Computational Astrophysics, Flatiron Institute , 162 5th Avenue, Manhattan, NY 10010, USA

4. Leibniz Institute for Astrophysics Potsdam , An der Sternwarte 16, D-14482 Potsdam, Germany

Abstract

ABSTRACT The detailed age-chemical abundance relations of stars measure time-dependent chemical evolution. These trends offer strong empirical constraints on nucleosynthetic processes, as well as the homogeneity of star-forming gas. Characterizing chemical abundances of stars across the Milky Way over time has been made possible very recently, thanks to surveys like Gaia, APOGEE, and Kepler. Studies of the low-α disc have shown that individual elements have unique age–abundance trends and the intrinsic dispersion around these relations is small. In this study, we examine and compare the age distribution of stars across both the high and low-α disc and quantify the intrinsic dispersion of 16 elements around their age–abundance relations at [Fe/H] = 0 using APOGEE DR16. We examine the age–metallicity relation and visualize the temporal and spatial distribution of disc stars in small chemical cells. We find: (1) the high-α disc has shallower age–abundance relations compared to the low-α disc, but similar median intrinsic dispersions of ∼0.03 dex; (2) turnover points in the age-[Fe/H] relations across radius for both the high- and low-α disc. The former constrains the mechanisms that set similar intrinsic dispersions, regardless of differences in the enrichment history, for stars in both disc, and the latter indicates the presence of radial migration in both disc. Our study is accompanied by an age catalogue for 64 317 stars in APOGEE derived using the cannon with a median uncertainty of 1.5 Gyr (26 per cent; APO-CAN stars), and a red clump catalogue of 22 031 stars with a contamination rate of 2.7 per cent.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3