Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)

Author:

Brennan S J1ORCID,Fraser M1ORCID,Johansson J2ORCID,Pastorello A3ORCID,Kotak R4,Stevance H F5ORCID,Chen T -W67ORCID,Eldridge J J5ORCID,Bose S89ORCID,Brown P J10ORCID,Callis E1ORCID,Cartier R11,Dennefeld M12,Dong Subo13,Duffy P1,Elias-Rosa N314ORCID,Hosseinzadeh G15ORCID,Hsiao E16ORCID,Kuncarayakti H1718,Martin-Carrillo A1,Monard B19,Pignata G2021ORCID,Sand D22ORCID,Shappee B J23ORCID,Smartt S J24,Tucker B E252627ORCID,Wyrzykowski L28ORCID,Abbot H25,Benetti S3ORCID,Bento J25ORCID,Blondin S2930ORCID,Chen Ping27,Delgado A3132,Galbany L14ORCID,Gromadzki M28ORCID,Gutiérrez C P1718ORCID,Hanlon L1,Harrison D L3133ORCID,Hiramatsu D34353637ORCID,Hodgkin S T31ORCID,Holoien T W -S38,Howell D A3435ORCID,Inserra C39ORCID,Kankare E4ORCID,Kozłowski S28ORCID,Müller-Bravo T E1440ORCID,Maguire K41ORCID,McCully C3435ORCID,Meintjes P42,Morrell N4344ORCID,Nicholl M4546,O’Neill D24,Pietrukowicz P28ORCID,Poleski R28ORCID,Prieto J L214748,Rau A7,Reichart D E49ORCID,Schweyer T67,Shahbandeh M50,Skowron J28ORCID,Sollerman J6ORCID,Soszyński I28ORCID,Stritzinger M D51ORCID,Szymański M28ORCID,Tartaglia L3ORCID,Udalski A28ORCID,Ulaczyk K2852ORCID,Young D R53ORCID,van Leeuwen M31,van Soelen B42ORCID

Affiliation:

1. School of Physics, O’Brien Centre for Science North, University College Dublin , Belfield, Dublin 4, Ireland

2. The Oskar Klein Centre, Department of Physics , AlbaNova, Stockholm University, SE-10691 Stockholm, Sweden

3. INAF–Osservatorio Astronomico di Padova , Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

4. Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland

5. The Department of Physics, The University of Auckland , Private Bag 92019, Auckland, New Zealand

6. The Oskar Klein Centre, Department of Astronomy , AlbaNova, Stockholm University, SE-10691 Stockholm, Sweden

7. Max-Planck-Institut für Extraterrestrische Physik , Giessenbachstraße 1, D-85748 Garching, Germany

8. Department of Astronomy, The Ohio State University , 140 W. 18th Avenue, Columbus, OH 43210, USA

9. Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University , 191 W. Woodruff Avenue, Columbus, OH 43210, USA

10. Department of Physics and Astronomy, Texas A&M University , 4242 TAMU, College Station, TX 77843, USA

11. Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory , Casilla 603, La Serena, Chile

12. Institut d’Astrophysique de Paris (IAP) , CNRS & Sorbonne Universite, 75014 Paris, France

13. Kavli Institute for Astronomy and Astrophysics, Peking University , Yi He Yuan Road 5, Hai Dian District, Beijing 100871, China

14. Institute of Space Sciences (ICE, CSIC) , Campus UAB, Carrer de Can Magrans s/n, E-08193 Barcelona, Spain

15. Steward Observatory, University of Arizona , 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA

16. Department of Physics, Florida State University , 77 Chieftan Way, Tallahassee, FL 32306, USA

17. Tuorla Observatory, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland

18. Finnish Centre for Astronomy with ESO (FINCA) , University of Turku, FI-20014 Turku, Finland

19. CBA–Kleinkaroo, Klein Karoo Observatory , PO Box 281, Calitzdorp 6660, South Africa

20. Departamento de Ciencias Físicas, Universidad Andres Bello , Avda. Republica 252, Santiago 8320000, Chile

21. Millennium Institute of Astrophysics , Camino El Observatorio 1515, Las Condes, Casilla, Santiago, Chile

22. Department of Astronomy/Steward Observatory , 933 North Cherry Avenue, Rm N204, Tucson, AZ 85721-0065, USA

23. Institute for Astronomy, University of Hawai’i , 2680 Woodlawn Drive, Honolulu, HI 96822, USA

24. Astrophysics Research Centre, School of Maths and Physics, Queen’s University Belfast , Belfast BT7 1NN, UK

25. Mt Stromlo Observatory, The Research School of Astronomy and Astrophysics, Australian National University , ACT 2601, Australia

26. National Centre for the Public Awareness of Science, Australian National University , Canberra, ACT 2611, Australia

27. The ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimension (ASTRO 3D) , Mount Stromlo Rd Stromlo, Australian Capital Territory 2611, Australia

28. Astronomical Observatory, University of Warsaw , Al. Ujazdowskie 4, PL-00478 Warszawa, Poland

29. Institute of Astronomy , Madingley Road, Cambridge CB3 0HA, UK

30. Unidad Mixta Internacional Franco-Chilena de Astronomía , CNRS/INSU UMI 3386 and Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile

31. Aix Marseille Univ , CNRS, CNES, LAM, 13013 Marseille, France

32. RHEA Group for ESA , European Space Astronomy Centre (ESAC–ESA), 28692, Madrid, Spain

33. Kavli Institute for Cosmology, Institute of Astronomy , Madingley Road, Cambridge CB3 0HA, UK

34. Las Cumbres Observatory , 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575, USA

35. Department of Physics, University of California , Santa Barbara, CA 93106-9530, USA

36. Center for Astrophysics | Harvard & Smithsonian , 60 Garden Street, Cambridge, MA 02138-1516, USA

37. The NSF AI Institute for Artificial Intelligence and Fundamental Interactions

38. The Observatories of the Carnegie Institution for Science , 813 Santa Barbara St, Pasadena, CA 91101, USA

39. School of Physics & Astronomy, Cardiff University , Queens Buildings, The Parade, Cardiff CF24 3AA, UK

40. School of Physics and Astronomy, University of Southampton , Southampton, Hampshire SO17 1BJ, UK

41. School of Physics, Trinity College Dublin, The University of Dublin , Dublin 2, Ireland

42. Department of Physics, University of the Free State , PO Box 339, Bloemfontein 9300, South Africa

43. Carnegie Observatories , Colina El Pino, Casilla 601, Chile

44. , Las Campanas Observatory , Colina El Pino, Casilla 601, Chile

45. Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham , Birmingham B15 2TT, UK

46. Institute for Astronomy, University of Edinburgh , Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK

47. Nucleo de Astronomia de la Facultad de Ingenieria y Ciencias , Av. Ejército 441, Santiago, Chile

48. , Universidad Diego Portales , Av. Ejército 441, Santiago, Chile

49. Department of Physics and Astronomy, University of North Carolina at Chapel Hill Chapel Hill , NC 27599, USA

50. Department of Physics, Florida State University , 77 Chieftain Way, Tallahassee, FL 32306-4350, USA

51. Department of Physics and Astronomy, Aarhus University , Ny Munkegade, DK-8000 Aarhus C, Denmark

52. Department of Physics, University of Warwick , Coventry CV4 7AL, UK

53. Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast , Belfast BT7 1NN, UK

Abstract

ABSTRACT We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.

Funder

CSIC

NSF

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3