Urca reactions during neutron star inspiral

Author:

Arras Phil1,Weinberg Nevin N2

Affiliation:

1. Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904, USA

2. Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Abstract We study the impact of Urca reactions driven by tidally induced fluid motion during binary neutron star inspiral. Fluid compression is computed for low radial order oscillation modes through an adiabatic, time-dependent solution for the mode amplitudes. Optically thin neutrino emission and heating rates are then computed from this adiabatic fluid motion. Calculations use direct and modified Urca reactions operating in a $M=1.4\, \mathrm{ M}_\odot$ neutron star, which is constructed using the Skyrme Rs equation of state. We find that the energy pumped into low-order oscillation modes is not efficiently thermalized even by direct Urca reactions, with core temperatures reaching only T ≃ 108 K during the inspiral. Although this is an order of magnitude larger than the heating due to shear viscosity considered by previous studies, it reinforces the result that the stars are quite cold at merger. Upon excitation of the lowest order g mode, the chemical potential imbalance reaches $\beta \gtrsim 1\, \rm MeV$ at orbital frequencies $\nu _{\rm orb} \gtrsim 200\, \rm Hz$, implying significant charged-current optical depths and Fermi-blocking. To assess the importance of neutrino degeneracy effects, the neutrino transfer equation is solved in the static approximation for the three-dimensional density distribution, and the reaction rates are then computed including Fermi-blocking. We find that the heating rate is suppressed by a factor of a ∼2 for $\nu _{\rm orb} \gtrsim 200\, \rm Hz$. The spectrum of emitted νe and $\bar{\nu }_e$, including radiation transfer effects, is presented for a range of orbital separations.

Funder

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3