Strong lensed QSOs with variability detectable by LSST: How many are there?

Author:

Taak Yoon Chan1ORCID,Treu Tommaso1ORCID

Affiliation:

1. Department of Physics and Astronomy, University of California , Los Angeles, CA 90095-1547 , USA

Abstract

ABSTRACT Strong lensed quasi-stellar objects (QSOs) are valuable probes of the Universe in numerous aspects. Two of these applications, reverberation mapping and measuring time delays for determining cosmological parameters, require the source QSOs to be variable with sufficient amplitude. In this paper, we forecast the number of strong lensed QSOs with sufficient variability to be detected by the Vera C. Rubin Telescope Legacy Survey of Space and Time (LSST). The damped random walk model is employed to model the variability amplitude of lensed QSOs taken from a mock catalogue by Oguri & Marshall (2010). We expect 30–40 per cent of the mock lensed QSO sample, which corresponds to ∼1000, to exhibit variability detectable with LSST. A smaller subsample of 250 lensed QSOs will show larger variability of >0.15 mag for bright lensed images with i < 21 mag, allowing for monitoring with smaller telescopes. We discuss systematic uncertainties in the prediction by considering alternative prescriptions for variability and mock lens catalogue with respect to our fiducial model. Our study shows that a large-scale survey of lensed QSOs can be conducted for reverberation mapping and time delay measurements following up on LSST.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3