Single-pulse studies of three millisecond pulsars

Author:

Palliyaguru N T1ORCID,Perera B B P2ORCID,McLaughlin M A34ORCID,Osłowski S5ORCID,Siebert G L6

Affiliation:

1. Department of Physics and Astronomy, Texas Tech University , Lubbock, TX 79409, USA

2. Arecibo Observatory, University of Central Florida , HC3 Box 53995, Arecibo, PR 00612, USA

3. Department of Physics and Astronomy, West Virginia University , Morgantown, WV 26501, USA

4. Center for Gravitational Waves and Cosmology, West Virginia University , Chestnut Ridge Research Building, Morgantown, WV 26505, USA

5. Manly Astrophysics , 15/41-42 East Esplanade, Manly, NSW 2095, Australia

6. Department of Physics, University of Wisconsin Madison , Madison, WI 53703, USA

Abstract

Abstract Single-pulse studies are important to understand the pulsar emission mechanism and the noise floor in precision timing. We study total intensity and polarimetry properties of three bright millisecond pulsars – PSRs J1022+1001, J1713+0747, and B1855+09 – that have detectable single pulses at multiple frequencies. We report for the first time the detection of single pulses from PSRs J1022+1001 and J1713+0747 at 4.5 GHz. In addition, for those two pulsars, the fraction of linear polarization in the average profile is significantly reduced at 4.5 GHz, compared to 1.38 GHz, which could support the expected deviation from a dipolar field closer to the pulsar surface. There is a hint of orthogonal modes in the single pulses of PSR J1713+0747. More sensitive multifrequency observations may be useful to confirm these findings. The jitter noise contributions at 1.38 GHz, scaled to one hour, for PSRs J1022+1001, J1713+0747, and B1855+09 are ≈135, ≈45, and ≈60 ns, respectively and are consistent with previous studies. We also show that selective bright-pulse timing of PSR J1022+1001 yields improved root-mean-square residuals of ≈22 $\mu$s, which is a factor of ≈3 better than timing using single pulses alone.

Funder

National Science Foundation

University of Central Florida

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3