Evolution of helium triplet transits of close-in gas giants orbiting K dwarfs

Author:

Allan Andrew P1ORCID,Vidotto Aline A1ORCID,Villarreal D’Angelo Carolina2ORCID,Dos Santos Leonardo A3ORCID,Driessen Florian A1ORCID

Affiliation:

1. Leiden Observatory, Leiden University , PO Box 9513, NL-2300 RA Leiden , The Netherlands

2. Instituto de Astronomía Teórica y Experimental. Laprida 854 , X5000BGR Córdoba , Argentina

3. Space Telescope Science Institute , 3700 San Martin Drive, Baltimore, MD 21218 , USA

Abstract

ABSTRACT Atmospheric escape in exoplanets has traditionally been observed using hydrogen Lyman-α and Hα transmission spectroscopy, but more recent detections have utilized the metastable helium triplet at 1083 nm. Since this feature is accessible from the ground, it offers new possibilities for studying atmospheric escape. Our goal is to understand how the observability of escaping helium evolves during the lifetime of a highly irradiated gas giant. We extend our previous work on 1D self-consistent hydrodynamic escape from hydrogen-only atmospheres as a function of planetary evolution to the first evolution-focused study of escaping hydrogen–helium atmospheres. Additionally, using these novel models we perform helium triplet transmission spectroscopy. We adapt our previous hydrodynamic escape model to now account for both hydrogen and helium heating and cooling processes and simultaneously solve for the population of helium in the triplet state. To account for the planetary evolution, we utilize evolving predictions of planetary radii for a close-in 0.3 MJup gas giant and its received stellar flux in X-ray, hard and soft extreme-ultraviolet (UV), and mid-UV wavelength bins assuming a K-dwarf stellar host. We find that the helium triplet signature diminishes with evolution. Our models suggest that young (≲ 150 Myr), close-in gas giants (∼1 to 2 RJup) should produce helium 1083 nm transit absorptions of $\sim 4~{{\ \rm per\ cent}}$ or $\sim 7~{{\ \rm per\ cent}}$, for a slow- or fast-rotating K dwarf, respectively, assuming a 2  per cent helium abundance.

Funder

ESA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3