The effect of noise artefacts on gravitational-wave searches for neutron star post-merger remnants

Author:

Panther F H12ORCID,Lasky P D23

Affiliation:

1. Department of Physics, University of Western Australia , Crawley WA 6009, Australia

2. OzGrav: The ARC Centre of Excellence for Gravitational-wave Discovery , Australia

3. School of Physics and Astronomy, Monash University , Melbourne, VIC 3800, Australia

Abstract

ABSTRACT Gravitational waves from binary neutron star post-merger remnants have the potential to uncover the physics of the hot nuclear equation of state. These gravitational-wave signals are high frequency (∼kHz) and short-lived ($\mathcal {O}(10\, \mathrm{ms})$), which introduces potential problems for data analysis algorithms due to the presence of non-stationary and non-Gaussian noise artefacts in gravitational-wave observatories. We quantify the degree to which these noise features in LIGO data may affect our confidence in identifying post-merger gravitational-wave signals. We show that the combination of vetoing data with non-stationary glitches and the application of the Allen χ2 veto (usually reserved for long-lived lower frequency gravitational-wave signals), allows one to confidently detect post-merger signals with signal-to-noise ratio ρ ≳ 8. We discuss the need to incorporate the data quality checks and vetoes into realistic post-merger gravitational-wave searches, and describe their relevance to calculating realistic false-alarm and false-dismissal rates.

Funder

Australian Research Council

National Science Foundation

Swinburne University of Technology

Science and Technology Facilities Council

STFC

MPS

CNRS

INFN

Ministry of Education, Culture, Sports, Science and Technology

MEXT

Japan Society for the Promotion of Science

NRF

Ministry of Science and ICT

Academia Sinica

AS

National Science and Technology Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3