Revisiting the gas kinematics in SSA22 Lyman-α Blob 1 with radiative transfer modelling in a multiphase, clumpy medium

Author:

Li Zhihui1ORCID,Steidel Charles C1ORCID,Gronke Max23ORCID,Chen Yuguang1ORCID

Affiliation:

1. Cahill Center for Astrophysics, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125, USA

2. Department of Physics, University of California, Santa Barbara, CA 93106, USA

3. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract

ABSTRACT We present new observations of Lyman-α (Lyα) Blob 1 (LAB1) in the SSA22 protocluster region (z = 3.09) using the Keck Cosmic Web Imager and Keck Multi-object Spectrometer for Infrared Exploration. We have created a narrow-band Lyα image and identified several prominent features. By comparing the spatial distributions and intensities of Lyα and Hβ, we find that recombination of photo-ionized H i gas followed by resonant scattering is sufficient to explain all the observed Lyα/Hβ ratios. We further decode the spatially resolved Lyα profiles using both moment maps and radiative transfer modelling. By fitting a set of multiphase, ‘clumpy’ models to the observed Lyα profiles, we manage to reasonably constrain many parameters, namely the H i number density in the interclump medium (ICM), the cloud volume filling factor, the random velocity and outflow velocity of the clumps, the H i outflow velocity of the ICM, and the local systemic redshift. Our model has successfully reproduced the diverse Lyα morphologies, and the main results are: (1) the observed Lyα spectra require relatively few clumps per line of sight as they have significant fluxes at the line centre; (2) the velocity dispersion of the clumps yields a significant broadening of the spectra as observed; (3) the clump bulk outflow can also cause additional broadening if the H i in the ICM is optically thick; (4) and the H i in the ICM is responsible for the absorption feature close to the Lyα line centre.

Funder

California Institute of Technology

University of California

National Aeronautics and Space Administration

W. M. Keck Foundation

Space Telescope Science Institute

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3