Classifying stars, galaxies, and AGNs in CLAUDS + HSC-SSP using gradient boosted decision trees

Author:

Golob Anneya1,Sawicki Marcin1ORCID,Goulding Andy D2,Coupon Jean3

Affiliation:

1. Institute for Computational Astrophysics and Department of Astronomy and Physics, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia B3H 3C 3, Canada

2. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA

3. Astronomy Department, University of Geneva, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland

Abstract

ABSTRACT Classifying catalogue objects as stars, galaxies, or active galactic nuclei (AGNs) is a crucial part of any statistical study of galaxies. We describe our pipeline for binary (star/galaxy) and multiclass (star/galaxy/Type I AGN/Type II AGN) classification developed for the very deep CLAUDS + HSC-SSP u*grizy data set. Our method uses the XGBoost implementation of gradient boosted trees (GBTs) to train ensembles of models that take photometry, colours, maximum surface brightnesses, and effective radii from all available bands as input, and output the probability that an object belongs to each of the classes under consideration. At iAB < 25 our binary star/galaxy model has AUC = 0.9974 and at the threshold that maximizes our sample’s weighted F1 score, selects a sample of galaxies with 99.7 per cent purity and 99.8 per cent completeness. We test the model’s ability to generalize to objects fainter than those seen during training and find that extrapolation of ∼1−2 mag is reasonable for most applications provided that the galaxies in the training sample are representative of the range of redshifts and colours of the galaxies in the target sample. We also perform an exploratory analysis of the method’s ability to identify AGNs using a small X-ray-selected sample and find that it holds promise for classifying Type I AGN, although it performs less well for Type II AGN. Our results demonstrate that GBTs provide a flexible, robust, and efficient method for performing classification of catalogue objects in large astronomical imaging surveys.

Funder

National Astronomical Observatories, Chinese Academy of Sciences

Ministry of Finance

NSERC

MEXT

JSPS

JST

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3