Training custom light curve models of SN Ia subpopulations selected according to host galaxy properties

Author:

Taylor G1ORCID,Lidman C1ORCID,Popovic B2,Abbot H J1

Affiliation:

1. Research School of Astronomy and Astrophysics, Australian National University , Canberra 2611 , Australia

2. CNRS, Université Lyon, Université Claude Bernard Lyon 1 , IP2I Lyon/IN2P3, IMR 5822, F-69622 Villeurbanne , France

Abstract

ABSTRACT Type Ia supernova (SN Ia) cosmology analyses include a luminosity step function in their distance standardization process to account for an observed yet unexplained difference in the post-standardization luminosities of SNe Ia originating from different host galaxy populations [e.g. high-mass ($M \gtrsim 10^{10} \, {\rm M}_{\odot }$) versus low-mass galaxies]. We present a novel method for including host-mass correlations in the SALT3 (Spectral Adaptive Light curve Template 3) light curve model used for standardizing SN Ia distances. We split the SALT3 training sample according to host-mass, training independent models for the low- and high-host-mass samples. Our models indicate that there are different average Si ii spectral feature strengths between the two populations, and that the average spectral energy distribution of SNe from low-mass galaxies is bluer than the high-mass counterpart. We then use our trained models to perform an SN cosmology analysis on the 3-yr spectroscopically confirmed Dark Energy Survey SN sample, treating SNe from low- and high-mass host galaxies as separate populations throughout. We find that our mass-split models reduce the Hubble residual scatter in the sample, albeit at a low statistical significance. We do find a reduction in the mass-correlated luminosity step but conclude that this arises from the model-dependent re-definition of the fiducial SN absolute magnitude rather than the models themselves. Our results stress the importance of adopting a standard definition of the SN parameters (x0, x1, c) in order to extract the most value out of the light curve modelling tools that are currently available and to correctly interpret results that are fit with different models.

Funder

U.S. Department of Energy

National Science Foundation

Science and Technology Facilities Council

University of Illinois at Urbana-Champaign

University of Chicago

Ohio State University

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3