Confined chaos and the chaotic angular motion of Atlas, a Saturn’s inner satellite

Author:

Pereira Lucas S1ORCID,Mourão Daniela C1,Winter Othon C1

Affiliation:

1. Grupo de Dinâmica Orbital and Planetologia, São Paulo State University (UNESP) , Guaratinguetá, 12516-410 São Paulo , Brazil

Abstract

ABSTRACT The dynamics of the Solar system exhibit inherent chaos and instability. Mathematical tools, such as the maximum Lyapunov characteristic exponent (LCE) and Lyapunov time (TL), play a crucial role in providing a qualitative understanding of chaos within celestial objects, such as asteroids and moonlets. Celestial bodies with relatively small Lyapunov times have garnered significant research interest due to their stable orbits, a phenomenon referred to as stable or confined chaos. Notable examples include Saturn’s satellites: Atlas, with a Lyapunov time on the order of 10 yr, Prometheus, and Pandora. This work aims to study the chaotic behaviour of the Atlas satellite and its relatively small TL. We present a three-dimensional model approach designed to isolate the radial contribution from the LCE and assess its influence within the LCE. Our investigation focuses on the Saturn system, comprising Saturn itself, along with its satellites Atlas, Prometheus, Pandora, and Mimas. To estimate the radial contribution of the LCE, we find the projection of the radial vector of a ghost Atlas (a slightly displaced Atlas) onto the Atlas radial vector, which allows us to calculate the difference between the radial vectors. This methodology enables us to estimate the radial contribution of the LCE and calculate the Lyapunov time. Remarkably, our results demonstrate that orbits remain confined even for integration times exceeding TL. Furthermore, we investigate the temporal behaviour of Atlas’ angular position in its orbit, potentially shedding light on chaotic angular dynamics.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3