Galaxy cluster SZ detection with unbiased noise estimation: an iterative approach

Author:

Zubeldia Íñigo1,Rotti Aditya1,Chluba Jens1ORCID,Battye Richard1

Affiliation:

1. Jodrell Bank Centre for Astrophysics, University of Manchester , Manchester M13 9PL, UK

Abstract

ABSTRACT Multi-frequency matched filters (MMFs) are routinely used to detect galaxy clusters from CMB data through the thermal Sunyaev–Zeldovich (tSZ) effect, leading to cluster catalogues that can be used for cosmological inference. In order to be applied, MMFs require knowledge of the cross-frequency power spectra of the noise in the maps. This is typically estimated from the data and taken to be equal to the power spectra of the data, assuming the contribution from the tSZ signal of the detections to be negligible. Using both analytical arguments and Planck-like mock observations, we show that doing so causes the MMF noise to be overestimated, inducing a loss of signal to noise. Furthermore, the MMF cluster observable (the amplitude $\hat{y}_0$ or the signal to noise q) does not behave as expected, which can potentially bias cosmological inference. In particular, the observable becomes biased with respect to its theoretical prediction and displays a variance that also differs from its predicted value. We propose an iterative MMF (iMMF) approach designed to mitigate these effects. In this approach, after a first standard MMF step, the noise power spectra are reestimated by masking the detections from the data, delivering an updated iterative cluster catalogue. Applying our iMMF to our Planck-like mock observations, we find that the aforementioned effects are completely suppressed. This leads to a signal-to-noise gain relative to the standard MMF, with more significant detections and a higher number of them, and to a cluster observable with the expected theoretical properties, thus eliminating any potential biases in the cosmological constraints.

Funder

ERC

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3