Impact of the mean pressure profile of galaxy clusters on the cosmological constraints from the Planck tSZ power spectrum

Author:

Ruppin F12ORCID,Mayet F1,Macías-Pérez J F1,Perotto L1

Affiliation:

1. Univ. Grenoble Alpes, CNRS, LPSC/IN2P3, 53 avenue des Martyrs, F-38000 Grenoble, France

2. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

ABSTRACT Cosmological analyses based on surveys of galaxy clusters observed through the Sunyaev–Zel’dovich (SZ) effect strongly rely on the mean pressure profile of the cluster population. A tension is currently observed between the cosmological constraints obtained from the analyses of the CMB primary anisotropies and those from cluster abundance in SZ surveys. This discrepancy may be explained by a wrong estimate of the hydrostatic bias parameter that links the hydrostatic mass to the true mass of galaxy clusters. However, a variation of both the amplitude and the shape of the mean pressure profile could also explain part of this tension. We analyse the effects of a modification of this profile on the constraints of the σ8 and Ωm parameters through the analysis of the SZ power spectrum measured by the Planck collaboration. We choose two mean pressure profiles that are respectively lower and higher than the one obtained from the observation of nearby clusters by Planck. The selection of the parameters of these two profiles is based on the current estimates of the pressure and gas mass fraction profile distributions at low redshift. The cosmological parameters found for these two profiles are significantly different from the ones obtained with the Planck pressure profile. We conclude that an ${\sim }15{{\ \rm per\ cent}}$ decrease of the amplitude of the mean normalized pressure profile would alleviate the tension observed between the constraints of σ8 and Ωm from the CMB and cluster analyses without requiring extreme values of the mass bias parameter.

Funder

Agence Nationale de la Recherche

National Aeronautics and Space Administration

Smithsonian Astrophysical Observatory

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3