Correlation between optical and γ-ray flux variations in BL Lacs

Author:

Rajput Bhoomika1,Shah Zahir2ORCID,Stalin C S1ORCID,Sahayanathan S3,Rakshit Suvendu45ORCID

Affiliation:

1. Indian Institute of Astrophysics, Block II, Koramangala, Bangalore 560034, Karnataka, India

2. Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, Maharashtra, India

3. Astrophysical Sciences Division, Bhabha Atomic Research Centre, 400085 Mumbai, Maharashtra, India

4. Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Quantum, Vesilinnantie 5, FI-20014 Turku, Finland

5. Aryabhatta Research Institute for Observational Sciences (ARIES), 400085 Nainital, Uttarakhand, India

Abstract

ABSTRACT We report here results of the analysis of correlated flux variations between the optical and GeV γ-ray bands in three bright BL Lac objects, namely AO 0235+164, OJ 287, and PKS 2155−304. This was based on the analysis of about 10 yr of data from the Fermi Gamma-ray Space Telescope covering the period between 2008 August 8 and 2018 August 8 along with optical data covering the same period. For all the sources, during the flares analysed in this work, the optical and γ-ray flux variations are found to be closely correlated. From broad-band spectral energy distribution modelling of different epochs in these sources using the one-zone leptonic emission model, we found that the optical–ultraviolet emission is dominated by synchrotron emission from the jet. The γ-ray emission in the low synchrotron peaked sources AO 0235+164 and OJ 287 is found to be well fitted with external Compton (EC) component, while the γ-ray emission in the high synchrotron peaked source PKS 2155−304 is well fitted with synchrotron self-Compton component. Further, we note that the γ-ray emission during the high-flux state of AO 0235+164 (epochs A and B) requires seed photons from both the dusty torus and broad-line region, while the γ-ray emission in OJ 287 and during epochs C and D of AO 0235+164 can be modelled by EC scattering of infrared photons from the torus.

Funder

High Performance Computing Facility of the Indian Institute of Astrophysics

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3