Energetic pickup proton population downstream of the termination shock as revealed by IBEX-Hi data

Author:

Baliukin I I123ORCID,Izmodenov V V124ORCID,Alexashov D B14

Affiliation:

1. Space Research Institute of Russian Academy of Sciences, Profsoyuznaya Str. 84/32, Moscow 117997, Russia

2. Lomonosov Moscow State University, Moscow Center for Fundamental and Applied Mathematics, GSP-1, Leninskie Gory, Moscow 119991, Russia

3. HSE University, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia

4. Institute for Problems in Mechanics, Vernadskogo 101-1, Moscow 119526, Russia

Abstract

ABSTRACT Pickup protons originate as a result of the ionization of hydrogen atoms in the supersonic solar wind, forming the suprathermal component of protons in the heliosphere. While they are being picked by the heliospheric magnetic field and convected into the heliosheath, the pickup protons may suffer stochastic acceleration from the solar wind turbulence in the region from the Sun up to the heliospheric termination shock, where they can also experience shock-drift acceleration or reflection from the cross-shock potential. These processes create a high-energy tail in the pickup ion energy distribution. The properties of this energetic pickup proton population are still not well defined, in spite of the fact that they are vital for models that simulate energetic neutral atom fluxes. We consider two scenarios for the pickup proton velocity distribution downstream of the heliospheric termination shock (a filled shell with an energetic power-law tail, and bi-Maxwellian). Based on a numerical kinetic model and observations of the energetic neutral atom fluxes from the inner heliosheath by the IBEX-Hi instrument, we characterize the pickup proton distribution and provide estimations of the properties of the energetic pickup proton population downstream of the termination shock.

Funder

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3