One star, two stars, or both? Investigating metallicity-dependent models for gamma-ray burst progenitors with the IllustrisTNG simulation

Author:

Metha Benjamin1ORCID,Trenti Michele12

Affiliation:

1. School of Physics, The University of Melbourne, Melbourne, VIC 3010, Australia

2. Australian Research Council Centre of Excellence for All-Sky Astrophysics in 3-Dimensions, Canberra, ACT 2601, Australia

Abstract

ABSTRACT The rate of long-duration gamma-ray bursts (GRBs) has been identified as a potential proxy for the star formation rate (SFR) across redshift, but the exact relationship depends on GRB progenitor models (single versus binary). The single-progenitor collapsar model accounts for the preference towards low-metallicity GRB progenitors, but is in apparent tension with some high-metallicity GRB host galaxy measurements. As a possible solution, we consider the scenario where high-metallicity GRB hosts harbour low-metallicity regions in which GRB progenitors form. For this, we use the IllustrisTNG cosmological hydrodynamical simulation to investigate the internal metallicity distribution of GRB hosts, implementing in post-processing different GRB formation models. Predictions (GRB rate, host metallicities, and stellar masses) are compared to the high-completeness GRB legacy surveys BAT6 and SHOALS and a sample of high-redshift GRB-DLA metallicities, allowing us to compute their relative likelihoods. When the internal metallicity distribution of galaxies is ignored, the best-fitting model requires a metallicity-independent channel, as previously proposed by Trenti, Perna, & Jimenez. However, when the internal metallicity distribution is considered, a basic metallicity bias model with a cutoff at $Z_{\rm max}=0.35\, \mathrm{\it Z}_\odot$ is the best-fitting one. Current data are insufficient to discriminate among more realistic metallicity bias models, such as weak metallicity dependence of massive binaries versus stronger metallicity bias of collapsars. An increased sample of objects, and direct measurements of host stellar masses at redshift z > 2 would allow to further constrain the origin of long GRBs.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3