Model of imbalanced kinetic Alfvén turbulence with energy exchange between dominant and subdominant components

Author:

Gogoberidze G1ORCID,Voitenko Y M2

Affiliation:

1. Institute of Theoretical Physics, Ilia State University, 3 ave. Cholokashvili, Ge0162 Tbilisi, Georgia

2. Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels, Belgium

Abstract

ABSTRACT Alfvénic turbulence in the fast solar wind is imbalanced: the energy of the (dominant) waves propagating outward from the Sun is much larger than energy of inward-propagating (subdominant) waves. At large scales Alfvén waves are non-dispersive and turbulence is driven by non-linear interactions of counter-propagating waves. Contrary to this, at kinetic scales Alfvén waves become dispersive and non-linear interactions become possible among co-propagating waves as well. The study of the transition between these two regimes of Alfvénic turbulence is important for understanding of complicated dynamics of imbalanced Alfvénic turbulence. In this paper, we present a semiphenomenological model of the imbalanced Alfvénic turbulence accounting for the energy exchange between the dominant and subdominant wave fractions. The energy transfer becomes non-negligible at sufficiently small yet still larger than the ion gyroradius scales and is driven by the non-linear beatings between dispersive dominant(subdominant) waves pumping energy into the subdominant(dominant) component. Our results demonstrate that the turbulence imbalance should decrease significantly in the weakly dispersive wavenumber range.

Funder

Shota Rustaveli National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3